Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Immunol ; 14: 1147953, 2023.
Article in English | MEDLINE | ID: covidwho-2292455

ABSTRACT

Several COVID-19 vaccine strategies utilizing new formulations for the induction of neutralizing antibodies (nAbs) and T cell immunity are still under evaluation in preclinical and clinical studies. Here we used Simian Immunodeficiency Virus (SIV)-based integrase defective lentiviral vector (IDLV) delivering different conformations of membrane-tethered Spike protein in the mouse immunogenicity model, with the aim of inducing persistent nAbs against multiple SARS-CoV-2 variants of concern (VoC). Spike modifications included prefusion-stabilizing double proline (2P) substitutions, mutations at the furin cleavage site (FCS), D614G mutation and truncation of the cytoplasmic tail (delta21) of ancestral and Beta (B.1.351) Spike, the latter mutation to markedly improve IDLV membrane-tethering. BALB/c mice were injected once with IDLV delivering the different forms of Spike or the recombinant trimeric Spike protein with 2P substitutions and FCS mutations in association with a squalene-based adjuvant. Anti-receptor binding domain (RBD) binding Abs, nAbs and T cell responses were detected up to six months from a single immunization with escalating doses of vaccines in all mice, but with different levels and kinetics. Results indicated that IDLV delivering the Spike protein with all the combined modifications, outperformed the other candidates in terms of T cell immunity and level of both binding Abs and nAbs soon after the single immunization and persistence over time, showing the best capacity to neutralize all formerly circulating VoC Alpha, Beta, Gamma and Delta. Although present, the lowest response was detected against Omicron variants (BA.1, BA.2 and BA.4/5), suggesting that the magnitude of immune evasion may be related to the higher genetic distance of Omicron as indicated by increased number of amino acid substitutions in Spike acquired during virus evolution.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Humans , Mice , Spike Glycoprotein, Coronavirus/genetics , Integrases , COVID-19 Vaccines , SARS-CoV-2/genetics , Antibodies, Neutralizing , Disease Models, Animal , Mice, Inbred BALB C , Immunity
2.
Front Immunol ; 12: 750386, 2021.
Article in English | MEDLINE | ID: covidwho-1515534

ABSTRACT

Antibodies targeting Receptor Binding Domain (RBD) of SARS-CoV-2 have been suggested to account for the majority of neutralizing activity in COVID-19 convalescent sera and several neutralizing antibodies (nAbs) have been isolated, characterized and proposed as emergency therapeutics in the form of monoclonal antibodies (mAbs). However, SARS-CoV-2 variants are rapidly spreading worldwide from the sites of initial identification. The variants of concern (VOC) B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.167.2 (Delta) showed mutations in the SARS-CoV-2 spike protein potentially able to cause escape from nAb responses with a consequent reduction of efficacy of vaccines and mAbs-based therapy. We produced the recombinant RBD (rRBD) of SARS-CoV-2 spike glycoprotein from the Wuhan-Hu 1 reference sequence in a mammalian system, for mice immunization to isolate new mAbs with neutralizing activity. Here we describe four mAbs that were able to bind the rRBD in Enzyme-Linked Immunosorbent Assay and the transmembrane full-length spike protein expressed in HEK293T cells by flow cytometry assay. Moreover, the mAbs recognized the RBD in supernatants of SARS-CoV-2 infected VERO E6 cells by Western Blot under non-reducing condition or in supernatants of cells infected with lentivirus pseudotyped for spike protein, by immunoprecipitation assay. Three out of four mAbs lost their binding efficiency to completely N-deglycosylated rRBD and none was able to bind the same recombinant protein expressed in Escherichia coli, suggesting that the epitopes recognized by three mAbs are generated by the conformational structure of the glycosylated native protein. Of particular relevance, three mAbs were able to inhibit Wuhan SARS-CoV-2 infection of VERO E6 cells in a plaque-reduction neutralization test and the Wuhan SARS-CoV-2 as well as the Alpha, Beta, Gamma and Delta VOC in a pseudoviruses-based neutralization test. These mAbs represent important additional tools for diagnosis and therapy of COVID-19 and may contribute to the understanding of the functional structure of SARS-CoV-2 RBD.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , Epitopes/immunology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites, Antibody/immunology , Cell Line, Tumor , Chlorocebus aethiops , Female , Glycosylation , HEK293 Cells , Humans , Mice, Inbred BALB C , Neutralization Tests , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , COVID-19 Drug Treatment
3.
Viruses ; 13(6)2021 05 22.
Article in English | MEDLINE | ID: covidwho-1244143

ABSTRACT

Europe is experiencing a third wave of COVID-19 due to the spread of highly transmissible SARS-CoV-2 variants. A number of positive and negative factors constantly shape the rates of COVID-19 infections, hospitalization, and mortality. Among these factors, the rise in increasingly transmissible variants on one side and the effect of vaccinations on the other side create a picture deeply different from that of the first pandemic wave. Starting from the observation that in several European countries the number of COVID-19 infections in the second and third pandemic wave increased without a proportional rise in disease severity and mortality, we hypothesize the existence of an additional factor influencing SARS-CoV-2 dynamics. This factor consists of an immune defence against severe COVID-19, provided by SARS-CoV-2-specific T cells progressively developing upon natural exposure to low virus doses present in populated environments. As suggested by recent studies, low-dose viral particles entering the respiratory and intestinal tracts may be able to induce T cell memory in the absence of inflammation, potentially resulting in different degrees of immunization. In this scenario, non-pharmaceutical interventions would play a double role, one in the short term by reducing the detrimental spreading of SARS-CoV-2 particles, and one in the long term by allowing the development of a widespread (although heterogeneous and uncontrollable) form of immune protection.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , COVID-19/prevention & control , Dose-Response Relationship, Immunologic , Environmental Exposure , Humans , Immunologic Memory
4.
Nat Commun ; 12(1): 2670, 2021 05 11.
Article in English | MEDLINE | ID: covidwho-1225507

ABSTRACT

Understanding how antibody responses to SARS-CoV-2 evolve during infection may provide important insight into therapeutic approaches and vaccination for COVID-19. Here we profile the antibody responses of 162 COVID-19 symptomatic patients in the COVID-BioB cohort followed longitudinally for up to eight months from symptom onset to find SARS-CoV-2 neutralization, as well as antibodies either recognizing SARS-CoV-2 spike antigens and nucleoprotein, or specific for S2 antigen of seasonal beta-coronaviruses and hemagglutinin of the H1N1 flu virus. The presence of neutralizing antibodies within the first weeks from symptoms onset correlates with time to a negative swab result (p = 0.002), while the lack of neutralizing capacity correlates with an increased risk of a fatal outcome (p = 0.008). Neutralizing antibody titers progressively drop after 5-8 weeks but are still detectable up to 8 months in the majority of recovered patients regardless of age or co-morbidities, with IgG to spike antigens providing the best correlate of neutralization. Antibody responses to seasonal coronaviruses are temporarily boosted, and parallel those to SARS-CoV-2 without dampening the specific response or worsening disease progression. Our results thus suggest compromised immune responses to the SARS-CoV-2 spike to be a major trait of COVID-19 patients with critical conditions, and thereby inform on the planning of COVID-19 patient care and therapy prioritization.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/mortality , SARS-CoV-2/immunology , Aged , Antibodies, Viral/immunology , Antibody Formation , Betacoronavirus/immunology , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Kinetics , Longitudinal Studies , Male , Middle Aged , Neutralization Tests , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Survival Rate
5.
Front Oncol ; 10: 592891, 2020.
Article in English | MEDLINE | ID: covidwho-993397

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) causes an uncontrolled activation of the innate immune response, resulting in acute respiratory distress syndrome and systemic inflammation. The effects of COVID-19-induced inflammation on cancer cells and their microenvironment are yet to be elucidated. Here, we formulate the hypothesis that COVID-19-associated inflammation may generate a microenvironment favorable to tumor cell proliferation and particularly to the reawakening of dormant cancer cells (DCCs). DCCs often survive treatment of primary tumors and populate premetastatic niches in the lungs and other organs, retaining the potential for metastatic outgrowth. DCCs reawakening may be promoted by several events associated to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including activation of neutrophils and monocytes/macrophages, lymphopenia and an uncontrolled production of pro-inflammatory cytokines. Among pro-inflammatory factors produced during COVID-19, neutrophil extracellular traps (NETs) released by activated neutrophils have been specifically shown to activate premetastatic cancer cells disseminated in the lungs, suggesting they may be involved in DCCs reawakening in COVID-19 patients. If confirmed by further studies, the links between COVID-19, DCCs reactivation and tumor relapse may support the use of specific anti-inflammatory and anti-metastatic therapies in patients with COVID-19 and an active or previous cancer.

6.
Breast Cancer Res ; 22(1): 117, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-895020

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) causes a hyperactivation of immune cells, resulting in lung inflammation. Recent studies showed that COVID-19 induces the production of factors previously implicated in the reawakening of dormant breast cancer cells such as neutrophil extracellular traps (NETs). The presence of NETs and of a pro-inflammatory microenvironment may therefore promote breast cancer reactivation, increasing the risk of pulmonary metastasis. Further studies will be required to confirm the link between COVID-19 and cancer recurrence. However, an increased awareness on the potential risks for breast cancer patients with COVID-19 may lead to improved treatment strategies to prevent metastatic relapse.


Subject(s)
Breast Neoplasms/immunology , Breast Neoplasms/virology , Coronavirus Infections/immunology , Neoplasm Recurrence, Local/immunology , Neoplasm Recurrence, Local/virology , Pneumonia, Viral/immunology , Betacoronavirus/immunology , Breast Neoplasms/pathology , COVID-19 , Coronavirus Infections/virology , Extracellular Traps/immunology , Female , Humans , Lung/immunology , Lung/pathology , Neoplasm Recurrence, Local/pathology , Neutrophils/immunology , Pandemics , Pneumonia/immunology , Pneumonia/virology , Pneumonia, Viral/virology , SARS-CoV-2 , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL